انواع نیروگاهها نیروگاههایی كه به منظور تولید انرژی الكتریكی به كار برده میشوند را میتوان به انواع زیر طبقهبندی كرد ۱ نیروگاه آبی ۲ نیروگاه بخاری ۳ نیروگاه هسته ای ۴ نیروگاه اضطراری ۵ نیروگاه گازی نیروگاه آبی تبدیل نیروی عظیم آب به نیروی الكتریكی از بدو پیدایش صنعت برق مورد توجه خاص قرار داشته است زیرا علاوه بر این كه آب رایگان در اختیا
قیمت فایل فقط 12,000 تومان
نیروگاه بخاری:
اگر بتوان در تحویلات یك نیروگاه بخار از آن مقدار كالری كه در آخرین مرحله از توربین خارج شده و در كندانسور تبدیل به آب میگردد استفاده صنعتی نمود، راندمان حرارتی نیروگاه به مقدار قابل ملاحظهای بالا میرود بدین جهت در تمام جاهائی كه علاوه بر انرژی الكتریكی احتیاج به مقدار زیادی كالری یا انرژی حرارتی باشد از توربین بخاری استفاده میشود كه بتوان پس از انجام كار الكتریكی از حرارت باقی مانده نیز استفاده كرد بعبارت دیگر در این نوع توربین بخار، بخار خارج شده از آخرین مرحلة توربین توسط لولههایی برای مصارف صنعتی و حرارتی هدایت میشود و بخار پس از تحویل انرژی حرارتی خود تقطیر شده و آب مقطر آن مجدداً به دیگ بخار باز میگردد و چنانچه دیده میشود عمل كندانسور را مصرف كننده انرژی حرارتی انجام میدهد.
البته عمل تقطیر در اینجا در درجه حرارت بیشتری انجام میگیرد تا در كندانسور كه تقریباً خلاء ایجاد میشود و بدین جهت گوئیم توربین در چنین نیروگاهی با فشار مخالف كار میكند.
یك كارگاه صنعتی بزرگ كه دائماً انرژی حرارتی مصرف میكند بهتر است مصرف الكتریكی خود را نیز خود، تهیه كند. زیرا در این صورت نیروی برق تولید شده یك نیروی باز یافته است كه در كنار تولید انرژی حرارتی بدست آمده است. بدین جهت است كه در كارخانجات شیمیایی، كاغذسازی، بریكت سازی، آبجو سازی و غیره اغلب از این نوع مراكز حرارتی كه در ارتباط با مولد برق میباشد استفاده میشود.
نیروگاه هسته ای :
نیروگاه هستهای، نیروگاهی است كه در آن از انرژی هستهای برای تولید انرژی الكتریكی استفاده میشود. نیروگاه حرارتی با سوخت فسیلی بعلت این كه در سالهای متمادی تكامل پیدا كرده است امروزه نسبت به نیروگاههای هستهای كه هنوز مراحل ابتدائی را میگذرانند و در شرف تكمیل هستند بسیار اقتصادیتر و ارزانتر است و فقط نیروگاه هستهای با قدرت MW600 به بالا میتواند تا حدودی با نیروگاههای حرارتی نوع دیگر رقابت كند نیروگاه هستهای با قدرت كمتر از M W600 فقط به عنوان یك نیروگاه آزمایشی مورد استفاده قرار میگیرد.
بنا بر فرضیههای جدید، اتم تشكیل شده است از تعدادی الكترون با بار منفی و یك هسته با بار مثبت الكترونها با سرعتی در حدود M/S1000000= V در فواصل معین و در روی مدارهای مشخص به دور هسته داخلی اتم كه ساكن میباشد میگردند.
هسته اتم خود از ذرات الكتریسیته مثبت به نام پروتون و ذراتی از نظر الكتریكی خنثی و بدون بار بنام نوترون تشكیل شده است.
مجموع پروتون و نوترون، نوكلئون نامیده میشود. ( NUKLEON) بدیهی است چون اتم از نظر الكتریكی خنثی است لذا تعداد پروتونهای هسته برابر تعداد الكترونهای دوار آن است.
تعداد پروتونها را عدد اتمی عنصر مینامند و تعداد كل پروتون و نوترونهای اتم را عدد جرمی عنصر مینامند. این تعداد مساوی نزدیكترین عدد صحیح به وزن اتمی جسم است. مثلاً آلومینیوم كه وزن اتمی آن ۲۷ است، دارای ۱۴ عدد نوترون و ۱۳ عدد پروتون در هسته و ۱۳ عدد الكترون در خارج هسته میباشد.
به ترتیب برای معرفی عناصر آنجایی كه فعل و انفعالهای مربوط به هسته در میان باشد هسته عناصر را با دو رقم فوقالذكر (عدد جرمی و عدد اتمی) مشخص میكنند.
طبق قوانین فیزیكی باید پروتونها كه همه دارای بار مثبت هستند و یكدیگر را دفع میكنند و چون این كار انجام نمیشود باید نیرویی قوی موجود باشد كه اینها را به هم متصل نگه میدارد و نمیگذارد هسته متلاشی شود. این نیرو را نیروی جاذبه هستهای یا به اختصار نیروی هستهای یا نیروی اتصالی مینامیم. این تجمع و ترتیب نوكلئون كاملاً مستقل از حرارت، فشار و اثرات شیمیایی میباشد و به این جهت كاملاً پایدار و با ثبات است.
منبع این نیرو كجاست؟ امروزه ثابت شده است كه جرم یك هسته كوچكتر از مجموع جرمهای اجزاء تشكیل دهنده هسته (نوكلئون) است.
تعریف مسأله و ضرورت خنك كردن هوای ورودی كمپرسور:
توربینهای گازی، ماشینهایی هستند كه مستقیماً از هوای آزاد تنفس میكنند لذا هر عاملی كه باعث تغییر شرایط هوای ورودی آنها گردد، موجب تغییر عملكرد توربین خواهد شد. یكی از این عوامل، افزایش دمای هوای ورودی به كمپرسور میباشد. میدانیم كه توربین گازها، ماشینهای دور ثابت هستند و چون پرههای واقع شده در ورودی كمپرسور نیز غالباً در یك زاویهای ثابت میشوند، حجم هوای ورودی به كمپرسور در شرایط مختلف آبوهوایی یكسان است. تولید توان توسط این ماشینها نیز رابطة مستقیم با دبی جرمی عبوری از آنها دارد، به همین خاطر در شرایطی كه هوا گرم شده و چگالی آن كاهش مییابد، جرم هوای كمتری وارد مجموعه شده، قدرت خروجی توربین افت پیدا میكند.
این مسأله از بعد دیگری نیز قابل بررسی است و آن اینكه فشردن هوای گرم، احتیاج به انرژی بیشتری دارد. بنابراین، در روزهای گرم، كمپرسور بخش بیشتری از انرژی
تولیدی توربین را صرف فشردن هوا مینماید و به همین خاطر مقدار انرژی كمتری در محور توربین جهت تبدیل به انرژی الكتریكی باقی خواهد ماند.
شكل شماره (۱)، منحنی مشخصة یك توربین گاز نمونه را نشان میدهد. وابستگی قدرت خروجی توربین به دمای هوای ورودی آن در این شكل قابل مشاهده است. به عنوان مثال، به ازای هر ۱۵ درجه سانتیگراد افزایش دما، حدود ۱۰ درصد از توان خروجی توربین كاسته میشود.
گزارشها نشان میدهند كه تولید كنندگان انرژی الكتریكی، هزینة بیشتری برای انرژی تولیدی در ساعاتی كه تقاضای مصرف برق زیاد است (مانند بعدازظهرهای گرم تابستان) میپردازند. این موضوع، انگیزة آنرا ایجاد میكند كه به طریقی، قدرت خروجی از دست رفتة توربین گازی در ساعات گرم را به آن باز گرداند، خاصه آنكه نیروگاههای بار پیك نیز احتیاج به افزایش قدرت خروجی در ساعات مصرف بالا دارند.
نیاز به افزایش توان در ساعات گرم به علاوة ضرورت افزایش توان با هزینة كم از طرفی و امكان محقق كردن این موارد در توربینهای گازی از طرف دیگر، باعث شده است تا از روشهای خنك كردن هوای ورودی به كمپرسور برای این منظور استفاده گردد.
بررسیها نشان میدهد كه به ازای هر خنك كردن هوای ورودی، قدرت خروجی توربین بین ۷/۰ تا ۱ درصد میتواند افزایش یابد. مقدار دقیق این افزایش مگاوات بستگی به پارامترهای مختلفی از جمله نوع توربین، عمر آن، محل قرارگیری آن و … دارد و بنابراین برای هر توربین خاص، باید جداگانه مورد مطالعه قرار گیرد.
كاهش دمای هوای ورودی توربین علاوه بر افزایش قدرت خروجی، باعث كاهش نرخ حرارتی (Heat Rate) آن نیز میشود و کارایی مجموعه را نیز افزایش میدهد. در منحنی شمارة (۱)، تأثیر دمای هوای ورودی روی توان خروجی توربین نشان داده شده است.
فهرست مطالب :
فصل اول- انواع نیروگاهها
نیروگاه آبی
نیروگاه بخاری
نیروگاه هسته ای
نیروگاه اضطراری
نیروگاه گازی
فصل دوم- ساختمان توربین گازی
کمپرسور
محفظه احتراق
توربین
فصل سوم- تعریف مسأله و ضرورت خنك كردن هوای ورودی كمپرسور
سیستمهای خنک کننده تبخیری
۱-سیستم air washer
۲-سیستم خنک کننده media
۳-سیستم فشار قوی fog
سیستمهای خنک کننده برودتی
۱-چیلرهای تراکمی
۲-چیلرهای جذبی
سیستمهای ذخیره سازی سرما
فصل چهارم
سیستم تماس مستقیم
سیستم غیر تماسی
خنک سازی تبخیری به وسیله فاگینگ (مه پاشی)
تولید fog
توزیع اندازه ذرات
ملاحظات خوردگی در کمپرسورهای توربین گاز
نحوه توزیع fog-فاکتور موثر بر تبخیر
سیستم کنترل
مکان نازلها در توربین گازی
کیفیت اب مصرفی
نمودار رطوبت سنجی پاشش ورودی
شرایط محیطی و قابلیت کاربرد پاشش fog در ورودی
اسیب FOD
موارد یخ زدگی
تحریک کمپرسور
تغییر شکل حرارتی ورودی
مسایل مربوط به خراب شدن
خوردگی در مجرای ورودی
فرسودگی روکش کمپرسور
انتخاب سیستم مناسب
بررسی اقتصادی
خنك سازی هوای دهانة ورودی – ویژگی طراحی و عوامل اقتصادی
امور اقتصادی و مالی (تأمین بودجه)
راه حل b/o /o در polar works
سرمایه گذاری بلند مدت در مقابل سرمایه گذاری کوتاه مدت
راهکار POLAR WORKS
مقایسه تکنولوژی فاگینگ در مقابل سیستم POLAR
ظرفیت و گنجایش اضافی و عوامل اقتصادی و اعتباری آن
ارزیابی بهینه سازی پروژه های نیروی جدید با خنك كردن هوای ورودی به توربین گازی
سیستم خنک کننده مهی با روش نوری برای توربین گازی
خنک سازی دهانه هوا برای توربینهای گازی با سیستم optiguide
تزریق swirl flash برای بهبود کارکرد نیروگاه
فصل پنجم
راه هوشمندانهای برای رسیدن به قدرت بیشتر از یك توربین گازی وجود دارد
چکیده مطالب
خنک سازی ورودی
مه پاشی fogging
اثر فاگینگ در نیروگاه قم
پیوست
منابع
این متن فقط قسمتی از بررسی افزایش کارایی نیروگاه گازی توسط خنک سازی ورودی (fogging) می باشد
جهت دریافت کل متن ، لطفا آن را خریداری نمایید
قیمت فایل فقط 12,000 تومان
برچسب ها : بررسی افزایش کارایی نیروگاه گازی توسط خنک سازی ورودی (fogging) , دانلود افزایش کارایی نیروگاه گازی توسط خنک سازی ورودی (fogging) , دانلود بررسی , نیروگاه بخاری , نیروگاه هستهای , چیلرهای جذبی
لذت درآمدزایی ساعتی ۳۵٫۰۰۰ تومان در منزل
فقط با ۵ ساعت کار در روز درآمد روزانه ۱۷۵٫۰۰۰ تومانی